GW9-10/630A Interruptor de desconexión de alta tensión de corriente continua de reinicio automático instalado en líneas aéreas de energía para protección
Descripción del producto:
Los interruptores de aislamiento de alto voltaje son componentes esenciales en los sistemas de transmisión y distribución de energía.ya que permiten aislar secciones específicas de la red para trabajos de mantenimiento o reparaciónTambién pueden utilizarse para aislar secciones de la red en caso de avería u otras condiciones anormales.
Estos interruptores están diseñados para manejar altos voltajes y corrientes, y generalmente están construidos con materiales duraderos y robustos como acero inoxidable, aluminio o cobre.Están diseñados para resistir las duras condiciones ambientales, como temperaturas extremas, fuertes vientos y fuertes lluvias.
Hay varios tipos de interruptores aislantes de alto voltaje, incluyendo interruptores de aire, interruptores sumergidos en aceite y interruptores aislados en gas.y trabajan usando un conjunto de contactos que se separan físicamente cuando se abre el interruptorLos interruptores sumergidos en aceite se utilizan típicamente en aplicaciones de alto voltaje y se llenan de aceite para evitar el arco cuando se abre el interruptor.Los interruptores aislados por gas utilizan gas hexafluoruro de azufre para aislar los contactos del interruptor, lo que permite diseños de interruptores más pequeños y compactos.
Los interruptores de aislamiento de alta tensión deberán ser operados y mantenidos por personal cualificado que haya recibido la formación adecuada.incluido el uso de equipos de protección individual adecuados y el seguimiento de procedimientos de bloqueo/etiquetado para evitar la activación accidental del equipo.El mantenimiento y las pruebas periódicas de los interruptores de aislamiento de alto voltaje también son importantes para garantizar que funcionen correctamente y sean seguros de usar.
Relación con el interruptor de vacío exterior:
La relación entre el interruptor de vacío exterior y el aislador de desconexión de alto voltaje exterior radica en sus funciones complementarias en el sistema eléctrico:
Interrupción del circuito: El interruptor de vacío es responsable de interrumpir el circuito eléctrico durante el funcionamiento normal o en caso de avería.Actúa como el principal medio de romper el flujo de corrientePor el contrario, el aislador de desconexión se utiliza para aislar el circuito de la fuente de alimentación durante las actividades de mantenimiento o reparación.Proporciona una capa adicional de seguridad al abrir físicamente el circuito.
Coordinación: En los sistemas eléctricos de alto voltaje, el interruptor de vacío y el aislador de desconexión a menudo se coordinan para trabajar juntos.El interruptor de circuito es responsable de detectar fallos y desencadenar para interrumpir el flujo de corriente, mientras que el aislador de desconexión se utiliza para aislar físicamente el circuito y proporcionar una indicación visible de la desconexión.
Seguridad y mantenimiento: El aislador de desconexión desempeña un papel crucial en la seguridad del personal de mantenimiento.el aislador de desconexión se activa para abrir el circuito y proporcionar una brecha de aire visiblePor otra parte, el interruptor de vacío protege el sistema durante el funcionamiento normal y en caso de averías.
1Cuando el aislador eléctrico HV está en posición cerrada, los contactos del aislador están en contacto entre sí, permitiendo que la corriente fluya a través del circuito.El aislador eléctrico HV se cierra mediante el manejo manual o remoto del aislador, dependiendo del tipo de aislante eléctrico HV.
2Para aislar una sección del sistema eléctrico, el aislador eléctrico HV debe abrirse.Esto se hace típicamente mediante el manejo manual o remoto del aislador para separar los contactos e interrumpir el flujo de corriente a través del circuito.
3.Una vez abierto el aislador eléctrico HV, la sección del sistema de energía que está conectada al aislador está aislada del resto del sistema.Esto permite realizar trabajos de mantenimiento o reparación de forma segura en el circuito aislado.
4Cuando el trabajo de mantenimiento o reparación esté terminado, el aislador eléctrico HV puede cerrarse para restaurar la energía al circuito aislado.Esto se hace mediante el manejo manual o remoto del aislador para conectar los contactos y restaurar el flujo de corriente a través del circuito.
Ventajas:
1Estructura sencilla: el interruptor de aislamiento está diseñado con una estructura sencilla, lo que lo hace fácil de entender y operar.
Bajo mantenimiento: debido a su diseño y construcción, el interruptor de aislamiento requiere un mantenimiento mínimo, lo que reduce la necesidad de inspecciones y reparaciones frecuentes.
2.Alta linealidad de rotura y cierre: El interruptor de aislamiento tiene una excelente linealidad de rotura y cierre, lo que garantiza un funcionamiento suave y confiable durante las operaciones de conmutación.
3Alta fiabilidad: el interruptor está diseñado para proporcionar un rendimiento fiable, minimizando el riesgo de averías o fallos durante el funcionamiento.
4.Comparable con las normas internacionales: el interruptor de aislamiento de la serie GW9-12 ((W) cumple o supera el nivel de productos similares tanto a nivel nacional como internacional,garantizar su compatibilidad y competitividad en el mercado.
Consejos de seguridad:
1.Llevar a cabo ensayos y mantenimiento de rutina del interruptor para garantizar su correcto funcionamiento, incluida la prueba de la resistencia de aislamiento del interruptor, la verificación del funcionamiento de los bloqueos de seguridad,y comprobar cualquier calentamiento o vibración anormal.
2.Implementar un procedimiento de bloqueo/etiquetado antes de realizar trabajos de mantenimiento o reparación del interruptor.Este procedimiento consiste en bloquear y etiquetar el interruptor para evitar la activación accidental mientras se realiza el trabajo, proporcionando una capa adicional de seguridad.
3.Ofrecer una formación adecuada al personal que operará o trabajará en el interruptor.así como los peligros potenciales asociados con el cambio.
4Implementar un sistema de gestión de la seguridad integral que incluya auditorías de seguridad periódicas, evaluaciones de riesgos e informes de incidentes.Este enfoque proactivo de la seguridad ayuda a identificar y abordar los riesgos potenciales antes de que resulten en accidentes o lesiones.
5.Asegurar la instalación de sistemas de ventilación y refrigeración adecuados para los interruptores de aislamiento de alta tensión situados en espacios cerrados o confinados. 6.La ventilación adecuada ayuda a disipar el calor y evita que el interruptor se sobrecaliente, lo que puede provocar averías o incluso incendios.
Condición:
1La altitud no excede los 1000 m.
2.La temperatura del aire ambiente: máximo + 40'C; mínimo:área general -30'C, paramos -40'C;
3.La presión del viento no excederá de 700 Pa. ((corresponde a una velocidad del viento de 34 m/s);
4La intensidad del terremoto no excede los 8 grados.
5.La situación de trabajo es libre de frecuentes vibraciones violentas;
6.El lugar de instalación del aislador de tipo ordinario debe mantenerse alejado de gases, deposiciones químicas de humo, niebla de sal, polvo
y otros materiales explosivos y corrosivos que afecten seriamente el aislamiento y la capacidad de conducción del aislante
7.El aislador tipo a prueba de contaminación se aplica a la zona de conducción sucia grave, sin embargo, no debe ser cualquier materia explosiva y las materias que causan fuego
Parámetros técnicos:
Número de serie. | Parámetro | Unidad | Datos obtenidos | |||||||||
1 | Voltagem nominal | el kV | 12 | |||||||||
2 | Corriente nominal | Número de modelo. | (H) GW9-12 ((W)/630-20 | A. No | 630 | |||||||
(H) GW9-12(W)/1000-20 | 1000 | |||||||||||
(H) GW9-12 ((W)/1250-31.5 | 1250 | |||||||||||
3 | 4s Corriente resistente de corto tiempo | Número de modelo. | (H) GW9-12 ((W)/630-20 | KA | 50 | |||||||
(H) GW9-12(W)/1000-20 | 50 | |||||||||||
(H) GW9-12 ((W)/1250-31.5 | 80 | |||||||||||
4 | Nivel de aislamiento nominal | La ola de rayos soporta el voltaje ((pico) | Polar a la Tierra (Positivo y negativo) |
el kV | 75 | |||||||
Interfractura (Positivo y negativo) |
85 | |||||||||||
Tensión de resistencia de frecuencia industrial (1 min) (Valor efectivo) |
Prueba en seco/prueba en húmedo | Polar a la Tierra | 42 ((Seco) 34 ((Humedad) |
|||||||||
Interfractura | 48 ((Seco) | |||||||||||
48 ((Seco) | ||||||||||||
48 ((Seco) 40 ((Humedad) |
||||||||||||
5 | Resistencia del circuito principal | Cuota de mercado | 630 | |||||||||
1000 | ||||||||||||
1250 | ||||||||||||
6 | Tiempo de vida mecánica | las veces | 50 | |||||||||
50 | ||||||||||||
80 |